Longford
Cof E Primary School

## Calculation Policy

| Document Title | Calculation Policy |
| :--- | :--- |
| Lead Officer: | Headteacher |
| Approving Body: | Longford Board of Governors |
| Review Date: | Jan 2021 |
| Edition and Date approved: | Jan 2020 |
| Indicate whether the document is for public access or internal <br> access only <br> (Strikethrough text, as appropriate) | Public Access-PDF copy to be posted-on-Schoot website <br> Internal Access Only- copy to be held on School PC <br> A back-up copy of all Policies is retained by the Clerk to the Longford Board of Governors |
| Indicate which legislation or statutory guidance <br> document requires this Policy |  |

This document outlines for Longford Primary School both the mental and written methods that should be taught from Year 1 to Year 6 . EYFS follow the early years curriculum and a good level of development. Maths assessed as developmental milestones towards a good level of development. It has been devised to meet requirements of the National Curriculum for the teaching and learning of mathematics.

This policy has been designed to teach children through the use of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation. Background This policy has been developed by Longford Primary School using a range of sources including White Rose calculation guidance and Mathematics Mastery policy as well as other schools with a specific interest in the use of methods to develop number awareness and fluency. The policy only details the strategies; teachers must plan opportunities for pupils to apply these; for example, when solving problems, or where opportunities emerge elsewhere in the curriculum. Using the concrete-pictorial-abstract approach: Children develop an understanding of a mathematical concept through the three steps (or representation) of concrete-pictorial-abstract approach. Reinforcement is achieved by going back and forth between these representations. Concrete representationThe enactive stage - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding. Pictorial representation- The iconic stage - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem. Abstract representation- The symbolic stage - a pupil is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$.


## Guidance:

This document provides guidance and examples for key objectives for each year group but is not to be followed as a complete planning aid as not all objectives are exemplified. A child may be working in Year 4 but may not be working towards that year group expectation and therefore will be working on strategies below. For this
reason the policy outlines strategies used for each operation but the strategies have not been headed by the year group children work in. Year group objectives for each operation have been included as guidance as to what children need to know by what year. Methods of calculation are specifically taught and children use them when problem solving.

## Aims of the Policy

- To ensure consistency and progression in our approach to calculation
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations
- To ensure that children can use these methods accurately with confidence and understanding
- To ensure that children become fluent in mathematics and that teachers can adapt lesson to incorporate mastery teaching


## How to use the Policy

- Use the policy as the basis of your planning but ensure you make adaptations according to the needs of pupils in your class.
- If, at any time, children are making significant errors, return to the previous stage in calculation
- It is expected that during periods of new learning teachers may extend the teaching sequence in order to embed the key skills
- Always use suitable resources, models and images to support children's understanding of calculation and place value, as appropriate

Addition and Subtraction National Curriculum Objectives for Addition and Subtraction

## Year 1:

- read, write and interpret mathematical statements involving addition (+), subtraction ( - ) and equals (=) signs )
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20 , including zero solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$.


## Year 2

- solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens two two-digit numbers - adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.


## Year 3

- add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answer
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.


## Year 4

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.


## Year 5

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.


## Year 6

- perform mental calculations, including with mixed operations and large numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition and subtraction
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

| Addition |  |  |  |
| :---: | :---: | :---: | :---: |
| Objectives <br> and <br> strategies | Concrete | Pictorial | Abstract |
| Combining two parts to make a whole part: part-whole Model Teach both addition and subtraction alongside each other, as pupils will use this model to identify the inverse link between them. This model begins to develop the understanding of the commutativity of addition, as pupils become aware that the parts will make the whole in any order | Use cubes to add two numbers together as a group or in a bar | Use pictures to add two numbers together as a group or in a bar. | Use the part-part whole diagram as shown below to move into the abstract. $5+3=8$ $10-4=6$ $10=4+6$ $10-6=4$ |
| Starting at the bigger number and counting on As a strategy, this should be limited to adding small quantities only ( 1,2 or 3 ) with pupils understanding that counting on from the | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. |  | $\begin{aligned} & 5+12=17 \\ & 17=12+5 \end{aligned}$ <br> Place the larger number in your head and count on the smaller number to find your answer. |


| greater is more efficient. |  | $12+5=17$ <br> Start at the larger number on the number line and count on in ones or in one jump to find the answer. <br> वЛ马eतת <br> c及a ers <br> [6 $8+1=9$ |
| :---: | :---: | :---: |
| Regrouping to make <br> 10. <br> This is an essential skill that will support column addition later on. <br> The colours of the beads on the bead string make it clear how many more need to be added to make ten. | $6+5$ $=11$ Start with the bigger number and use the smaller number <br> to make 10 . <br> Empty spaces on a ten frame make it clear how many more are needed to make 10. | Use pictures or a number line. Regroup or partition the smaller number to make 10 . $3+9=$ <br> $7+4=11$ <br> If I am at seven, how many more do I need to make 10. How many more do I add on now? $\begin{array}{r} 38+15= \\ 1 / 13 \\ 2+10 \end{array}$ $9+5=14$ $17+6=23$ |
| Adding 1, 2, 3 more Here the emphasis |  |  |






After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.


How many flowers are there altogether?


This formal recording should only be used as a guide for the procedure of written methods and not a way of calculating this sentence!


It is important that pupils are given plenty of (scaffolded) practice at choosing their own strategies to complete calculations efficiently and accurately. Explicit links need to be made between familiar number facts and the calculations that they can be useful for and pupils need to be encouraged to aim for efficiency.

| $345+30$ | $274-50$ |
| :--- | :--- |
| $1128+300$ | $1312-300$ |
| $326+342$ | $856-724$ |
| $945+1000$ | $3892-1000$ |
| $1482+900$ | $2382-500$ |





| Objective <br> and <br> Strategies | concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Taking away ones <br> When this is first introduced, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-to-one correspondence so that pupils can take them away, progressing to representing the group of ten with a tens rod and ones with ones cubes. | Use physical objects, counters, cubes etc to show how objects can be taken away. <br> Taking away after counting out practical equipment. . Children would be encouraged to physically remove these using touch counting. <br> By touch counting and dragging in this way, it allows children to keep track of how many they are removing so they don't have to keep recounting. They will then touch count the amount that are left to find the answer. | Cross out drawn objects to show what has been taken away. $15-3=12$ $28-4=$ | $18-3=15$ $8-2=6$ |


|  | Those who are ready may record their own calculations |  |  |
| :---: | :---: | :---: | :---: |
| Counting back <br> Pupils should be <br> encouraged to rely on number bonds knowledge as time goes on, rather than using counting back as their main strategy | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$ <br> Use counters and move them away from the group as you take them away counting backwards as you go. | Count back on a number line or number track $\text { 910 } 1112131415$ <br> Start at the bigger number and count back the smaller number showing the jumps on the number line. <br> This can progress all the way to counting back using two 2 digit numbers. | Put 13 in your head, count back 4. What number are you at? Use your fingers to help. $16-2=4$ |
|  |  | Subtract by Counting Back Subtract 3 from 15. $15-3=12$ <br> There are 12 flowers left. | 3 m. <br> 15 |


| Find the difference | Compare amounts and objects to find the difference. <br> Use cubes to build towers or make bars to find the difference <br> Use basic bar models with items to find the difference | Count on to find the difference. <br> Draw bars to find the difference between 2 numbers. | Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the numbers of sandwiches. |
| :---: | :---: | :---: | :---: |
| Part Part Whole Model <br> Teach both <br> addition and <br> subtraction <br> alongside <br> each other, as <br> the pupils <br> will use this <br> model to <br> identify the link <br> between <br> them. Pupils <br> start with <br> ten cubes <br> placed on the | Link to additionuse the part whole model to help explain the inverse between addition and subtraction. <br> If 10 is the whole and 6 is one of the parts. What is the other part? | Use a pictorial representation of objects to show the part part whole model. | Move to using numbers within the part whole model. |
|  | $10-6=$ | $7-5=2$ <br> 2 boats are not red. | How many boats are not red? |




| Subtracting tens and ones <br> Pupils must be taught to partition the second number for this strategy. Pupils will begin to see when this method is more efficient than subtracting tens and adding the extra ones, as shown. |  |  | $53-12=41$ |
| :---: | :---: | :---: | :---: |
| Subtracting tens and adding extra ones Pupils must be taught to round the number that is being subtracted. Pupils will develop a sense of efficiency with this method, beginning to identify when this method is more efficient than subtracting tens and then ones. |  |  | $53-17=36$ |
| Bridging through ten How pupils choose to apply this strategy is up to them. The focus should always be on efficiency. |  |  | $\begin{array}{r} 42-15= \\ 213 \\ 10 \end{array}$ |




Column method
with
with
regrouping
Strategy shows place
value counters will need to be shown using
dienes.
This example
Ther
shows how
pupils should
work
practically
when being
introduced to
this
method. There
is no
formal
recording in
columns in Year
1 but
his practical work will prepare pupils for formal methods in
Year 2.
Pupils are
introduced to
calculations
that require two instances two
of
regrouping
(initially from
tens to one and then
from hundreds
to tens).
E.g. 232-157
and are
given plenty of practice
using concrete manipulatives and images alongside their formal written methods,
ensuring that important steps are not

Use Bass 10 to mart with bafore moving exchange bafore moving onto suberactions with 2 exchange

Make the larger number with the place value counters


Now I can subtract my onse


Now look ar the tens, can I take away 8 tens easily? I saed to exchange one hundred for ten ters


Now I can take oway eight tens and complete my subtration


Show children how tha concrese mesthod linkt to the witten mathod alongide your working Cross out the numbers whan exchanging and thow whare we write our now amount

Draw tha courcors onco a place vales grid and
show whar you have takom oway by crosing the councors our as wall as clearly thowing tha exchangec you make.


Whas confidam, childres con ford thair own way to rocord the wachange/regrouping.

Jutr writing the mumber as shown hare thow: that the child undartarde the mathod ard knows whan to exchargairugroup


Childron can tart their formal writan mathod y parkionig arar place value las place colurs

Moving forward tha childron wese a more compact method


Thiz will laad to an underrtanding of suberacting any number including dacimala

$$
\begin{array}{rrrr} 
& 512 & 1 \\
2 & 6 & 0 & 0 \\
& 26 & 5 \\
\hline 2 & 3 & 6 & 5
\end{array}
$$

Very importans to use in a range of contexte masures and monay.

$$
\begin{array}{r}
780699 \\
-\quad 89949 \\
\hline 60750
\end{array}
$$





## Multiplication and Division

National Curriculum Objectives for Multiplication and Division
Year 1
$\checkmark$ solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

## Year 2

$\checkmark$ recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
$\checkmark$ calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication ( $x$ ), division ( $\div$ ) and equals ( $=$ ) signs
$\checkmark$ show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
$\checkmark$ solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

## Year 3

$\checkmark$ recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
$\checkmark$ write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
$\checkmark$ solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which $n$ objects are connected to m objects

## Year 4

$\checkmark$ recall multiplication and division facts for multiplication tables up to $12 \times 12$
$\checkmark$ use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
$\checkmark$ recognise and use factor pairs and commutativity in mental calculations
$\checkmark$ multiply two-digit and three-digit numbers by a one-digit number using formal written layout
$\checkmark$ solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as $n$ objects are connected to m objects.

## Year 5

Identify multiples and factors:
$\checkmark$ identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers
$\checkmark$ know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
$\checkmark$ establish whether a number up to 100 is prime and recall prime numbers up to 19
$\checkmark$ multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
$\checkmark$ multiply and divide numbers mentally, drawing upon known facts divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret
remainders appropriately for the context
$\checkmark$ multiply and divide whole numbers and those involving decimals by 10,100 and 1000
$\checkmark$ recognise and use square numbers and cube numbers, and the notation for squared ( ${ }^{(2)}$ and cubed ( ${ }^{(3)}$
$\checkmark$ solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares and cubes
$\checkmark$ solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
$\checkmark$ solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
$\checkmark$ multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
$\checkmark$ divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations, including with mixed operations and large numbersidentify common factors, common multiples and prime numbersuse their knowledge of the order of operations to carry out calculations involving the four operations
$\checkmark$ solve problems involving multiplication and divisionuse estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

## Progression in Calculations

## Multiplication

| Objective and Strategies | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Counting in multiples The representation for the amount of groups supports pupils' understanding of the written equation. So two groups of 2 are 2,4 Or five groups of 2 are $2,4,6$, 8, 10. Count the groups as pupils are skip | Count in multiples supported by concrete objects in equal groups. | Pupils can use their fingers as they are skip counting. <br> snyan anam angim? <br> Use a number line or pictures to continue support in counting in multiples. | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. <br> $2,4,6,8,10$ <br> $5,10,15,20,25,30$ |
| Making equal groups and counting the total How this would be represented as an equation will vary. This could be $2 \times$ <br> 4 or $4 \times 2$. The importance should be placed on the vocabulary use alongside the equation. So this |  |  |  |


| picture could |
| :---: |
| represent 2 groups |
| of 4 or 4 twice. |

Use different
objects to
add equal
arouns.



\begin{tabular}{|c|c|c|c|}
\hline division. Bar
models
with Cuisenaire
ross)
should be used to
identify the whole,
the size of the
parts
and the number of
parts. \& \& \& \\
\hline \begin{tabular}{l}
Doubling to derive new multiplication facts Pupils learn that known facts from easier times tables can be used to derive facts from related times tables using doubling as a strategy. \\
At this stage they double the \(2 x\) table facts to derive the \(4 x\) table facts
\end{tabular} \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8 \\
\(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

$\square$
$\square$
$\square$
$\square$ <br>
$5 \times 4=20$ <br>
$5 \times 2=10$ <br>
Children will experence equel growps of ob <br>
They will work on proctical probles soling

 \& 

Partition a number and then double each part before recombining it back together. <br>
acts. <br>
activitier inolving <br>
There ars 6 <br>
poin ef sacks. <br>
How mary secks are there atopether?
\end{tabular} <br>

\hline
\end{tabular}








## 4 children go to the cinema <br> They each pay $£ 15$. How much do they spend altogether?

Whole unknown

| $?$ |  |  |  |
| :--- | :--- | :--- | :--- |
| 15 | 15 | 15 | 15 |



The cost to run a sports centre is $£ 4375$ a week, how much would it cost to run for 16 weeks?


```
'/
£4375
Eweek
```

| Division |  |  |  |
| :---: | :---: | :---: | :---: |
| Sharing objects into groups Pupils should become familiar with division equations through working practically. | I have 10 cubes, can you share them equally in 2 groups? <br> Pupils should become familiar with division equation through working practically. $8 \div 4=2$ | Children use pictures or shapes to share quantities. <br> $8 \div 2=4$ <br> Draw an ecual number of spples for esch bosket. <br> There are 10 sweets. <br> Ring groups of 2 . <br>  <br> There are $\qquad$ groups of 2 . <br> Here, division is shown as sharing. If we have ten pairs of scissors and we share them between two pots, there will be 5 pairs of scissors in each pot. | Share 9 buns between three people. <br> The division symbol is not formally taught in Year 1. $9 \div 3=3$ |
| Division as grouping |  |  |  |

Divide quantities into equal groups.
Use cubes, counters, objects or place value counters to aid understanding.


$96 \div 3=32$


$\omega$ ल C ( C

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

Divide 28 into 7 groups. How many are in each group?


| Division with a remainder | $14 \div 3=$ <br> Divide objects between groups and see how much is left over | Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. <br> Draw dots and group them to divide an amount and clearly show a remainder. <br> ( <br>  <br> $13+4=3$ Remainder 1 | Complete written divisions and show the remainder using r . |
| :---: | :---: | :---: | :---: |




## Method 1



6 tens $\div 6$

$75 \div 6=12$ remainder 3 quotient

It is not possible to put 75 children into 6 equal groups.



